Data Science
Data Science Classes in Canada teaches students fundamental and advanced approaches in statistical inference, machine learning, data visualization, data mining, and big data, all of which are required abilities for a successful data scientist.
Call The Trainer
Batch Timing
- Regular: 2 Batches
- Weekends: 2 Batches
Request Call Back
Class Room & Online Training Quotation
About Data Science
In today's AI-driven economy, data scientists with computational abilities are in high demand to build, design, and implement models and tools for data-driven decision-making. Companies employ data science and artificial intelligence (AI) for marketing decisions, targeted customer suggestions, determining profitable insurance coverage, and giving individualized financial advice.
Data Science Course in Canada covers fundamental and advanced methods in statistical inference, machine learning, data visualization, data mining, and big data, all of which are required skills for a successful data scientist. We require a basic background in Mathematics (calculus, linear algebra), Statistics (probability and basic statistics), and Software Development to be admitted to the program (programming, data structures, and algorithms). This Data Science Training in Canada consists of ten three-credit courses.
The program curriculum includes tools such as R for statistical analysis and Tableau for data visualization, as well as the Python programming language and associated data science libraries. Students work on homework assignments and projects that involve combined concepts and applications on actual statistics, with support from the lecturer and teaching assistants.
What is Data Science all about?
Data science course in Canada is a discipline that employs methodological approaches, protocols, procedures, and systems that extract data and resources from data from multiple sources, and then applies that information and actionable data across a wide range of application areas.
Data mining, machine learning, and big data are all linked to information science. It makes use of techniques and theories from a wide range of disciplines, including mathematics, statistics, information science, information science, and industry knowledge.
In contrast, data science courses are separate from computer science and information science.
A Diploma in Data Scientists is a part-time data science certification course completed by a working professional to improve the methodology and tools used in a company's analytical and data science processes.
The purpose of the course is to help students develop statistical programming skills that will lead to a career in business.
The two-year Postgraduate Diploma in Data Science degree programme teaches students how to create strong methodological foundations in analytical statistics, how to perform statistical consultations, and how to use a variety of techniques, skills, and tools.
A candidate who successfully completes this Data Science course not only expands their working job application, but also opens doors to positions including such as Software Engineer, Business Analyst, Data Analyst, Data Engineer, Data Design professional, Data Mining Engineer, Research Analyst, Predictive Analytics Analyst, Analytics Manager, and so forth.
Why Should You Pursue Diploma in Data Science?
Data on market demand
Data Scientist is a job that is causing quite a stir due to the huge demand for it all around the world. According to a McKinsey & Company study, the US will have 140,000 to 180,000 less data scientists than it requires by 2018. The need for data scientists is increasing, yet the supply is insufficient. By 2018, India would require over 200,000 data scientists, compared to engineers and chartered accountants. With 11.5 million new employment predicted to be created by 2026, it is the fastest growing career on Linkedin. As a result, Data Science is a highly sought-after job path.
Good salary
According to Glassdoor, the highest paying field to enter in 2016 was data science. According to their findings, the national average salary for a Data Scientist in India is INR 6,50,000, while the national average salary in the US is $1,20,931. The national average salary for a Data Scientist in Europe is €52,000. As a result, Data Science is a lucrative career path.
Added Value to the Company
They are doing well in every field, from information technology to health care, E-commerce to marketing and retail. Data Scientists play an important role in serving as a trusted adviser and strategic partner to management because data is a company's most valuable asset. They mine the data for valuable resources that will help with the skill development of students.
Which Canadian city is the best for data science?
Toronto, Montreal, and Vancouver are all excellent places to work in data science. Many large corporations are headquartered in these locations, and Montreal and Toronto also have excellent institutions for studying Data Science.
Master of Science in Data Science and Big Data
Data Science and Big Data master's degrees sometimes overlap and teach students how to work with massive amounts of data. However, each discipline's goal and tools are distinct. Big Data is concerned with all information that cannot be processed by ordinary database systems. The 5 Vs are the simplest way to determine whether specific data may be labelled as Big Data (Volume, Velocity, Variety, Veracity, and Value). Data Science, on the other hand, is concerned with analysing data and generating meaningful insights for a certain person, business, or industry. Data Scientists must also translate their findings into presentations or reports that clients or broad audiences can understand.
Online Classes
Students are increasingly pursuing solely online Data Science course in Canada. SevenMentor Pvt. Ltd. provides effective online courses. Our instructors keep track of the students' progress. On the online Data Science training in Canada, our technology, software, and networking themes are well-trained. Our examinations and grasp of how to apply it will be successful. The placement cell places students 100 percent of the time.
Course Eligibility
- Freshers
- BE/ Bsc Candidate
- Any Engineers
- Any Graduate
- Any Post-Graduate
- Working Professionals
Syllabus of Data Science
- 1. Installation Of Vmware
- 2. MYSQL Database
- 3. Core Java
- 1.1 Types of Variable
- 1.2 Types of Datatype
- 1.3 Types of Modifiers
- 1.4 Types of constructors
- 1.5 Introduction to OOPS concept
- 1.6 Types of OOPS concept
- 4. Advance Java
- 1.1 Introduction to Java Server Pages
- 1.2 Introduction to Servlet
- 1.3 Introduction to Java Database Connectivity
- 1.4 How to create Login Page
- 1.5 How to create Register Page
- 5. Bigdata
- 1.1 Introduction to Big Data
- 1.2 Characteristics of Big Data
- 1.3 Big data examples
- 6. Hadoop
- i) BigData Inroduction,Hadoop Introduction and HDFS Introduction
- 1.1. Hadoop Architecture
- 1.2. Installing Ubuntu with Java on VM Workstation 11
- 1.3. Hadoop Versioning and Configuration
- 1.4. Single Node Hadoop installation on Ubuntu
- 1.5. Multi Node Hadoop installation on Ubuntu
- 1.6. Hadoop commands
- Cluster architecture and block placement
- 1.8. Modes in Hadoop
- Local Mode
- Pseudo Distributed Mode
- Fully Distributed Mode
- 1.9. Hadoop components
- Master components(Name Node, Secondary Name Node, Job Tracker)
- Slave components(Job tracker, Task tracker)
- 1.10. Task Instance
- 1.11. Hadoop HDFS Commands
- 1.12. HDFS Access
- Java Approach
- ii) MapReduce Introduction
- 1.1 Understanding Map Reduce Framework
- 1.2 What is MapReduceBase?
- 1.3 Mapper Class and its Methods
- 1.4 What is Partitioner and types
- 1.5 Relationship between Input Splits and HDFS Blocks
- 1.6 MapReduce: Combiner & Partitioner
- 1.7 Hadoop specific Data types
- 1.8 Working on Unstructured Data Analytics
- 1.9 Types of Mappers and Reducers
- 1.10 WordCount Example
- 1.11 Developing Map-Reduce Program using Eclipse
- 1.12 Analysing dataset using Map-Reduce
- 11.13 Running Map-Reduce in Local Mode.
- 1.14 MapReduce Internals -1 (In Detail) :
- How MapReduce Works
- Anatomy of MapReduce Job (MR-1)
- Submission & Initialization of MapReduce Job (What Happen ?)
- Assigning & Execution of Tasks
- Monitoring & Progress of MapReduce Job
- Completion of Job
- Handling of MapReduce Job
- Task Failure
- TaskTracker Failure
- JobTracker Failure
- 1.15 Advanced Topic for MapReduce (Performance and Optimization) :
- Job Sceduling
- In Depth Shuffle and Sorting
- 1.16 Speculative Execution
- 1.17 Output Committers
- 1.18 JVM Reuse in MR1
- 1.19 Configuration and Performance Tuning
- 1.20 Advanced MapReduce Algorithm :
- 1.21 File Based Data Structure
- Sequence File
- MapFile
- 1.22 Default Sorting In MapReduce
- Data Filtering (Map-only jobs)
- Partial Sorting
- 1.23 Data Lookup Stratgies
- In MapFiles
- 1.24 Sorting Algorithm
- Total Sort (Globally Sorted Data)
- InputSampler
- Secondary Sort
- 1.25 MapReduce DataTypes and Formats :
- 1.26 Serialization In Hadoop
- 1.27 Hadoop Writable and Comparable
- 1.28 Hadoop RawComparator and Custom Writable
- 1.29 MapReduce Types and Formats
- 1.30 Understand Difference Between Block and InputSplit
- 1.31 Role of RecordReader
- 1.32 FileInputFormat
- 1.33 ComineFileInputFormat and Processing whole file Single Mapper
- 1.34 Each input File as a record
- 1.35 Text/KeyValue/NLine InputFormat
- 1.36 BinaryInput processing
- 1.37 MultipleInputs Format
- 1.38 DatabaseInput and Output
- 1.39 Text/Biinary/Multiple/Lazy OutputFormat MapReduce Types
- iii)TOOLS:
- 1.1 Apache Sqoop
- Sqoop Tutorial
- How does Sqoop Work
- Sqoop JDBCDriver and Connectors
- Sqoop Importing Data
- Various Options to Import Data
- Table Import
- Binary Data Import
- SpeedUp the Import
- Filtering Import
- Full DataBase Import Introduction to Sqoope
- 1.2 Apache Hive
- 1.2 Apache Hive
- What is Hive ?
- Architecture of Hive
- Hive Services
- Hive Clients
- How Hive Differs from Traditional RDBMS
- Introduction to HiveQL
- Data Types and File Formats in Hive
- File Encoding
- Common problems while working with Hive
- Introduction to HiveQL
- Managed and External Tables
- Understand Storage Formats
- Querying Data
- 1.3 Apache Pig :
- What is Pig ?
- Introduction to Pig Data Flow Engine
- Pig and MapReduce in Detail
- When should Pig Used ?
- Pig and Hadoop Cluster
- Pig Interpreter and MapReduce
- Pig Relations and Data Types
- PigLatin Example in Detail
- Debugging and Generating Example in Apache Pig
- 1.4 HBase:
- Fundamentals of HBase
- Usage Scenerio of HBase
- Use of HBase in Search Engine
- HBase DataModel
- Table and Row
- Column Family and Column Qualifier
- Cell and its Versioning
- Regions and Region Server
- HBase Designing Tables
- HBase Data Coordinates
- Versions and HBase Operation
- Get/Scan
- Put
- Delete
- 1.5 Apache Flume:
- Flume Architecture
- Installation of Flume
- Apache Flume Dataflow
- Apache Flume Environment
- Fetching Twitter Data
- 1.6 Apache Kafka:
- Introduction to Kafka
- Cluster Architecture
- Installation of kafka
- Work Flow
- Basic Operations
- Real time application(Twitter)
- 4)HADOOP ADMIN:
- Introduction to Big Data and Hadoop
- Types Of Data
- Characteristics Of Big Data
- Hadoop And Traditional Rdbms
- Hadoop Core Services
- Hadoop single node cluster(HADOOP-1.2.1)
- Tools installation for hadoop1x.
- Sqoop,Hive,Pig,Hbase,Zookeeper.
- Analyze the cluster using
- a)NameNode UI
- b)JobTracker UI
- SettingUp Replication Factor
- Hadoop Distributed File System:
- Introduction to Hadoop Distributed File System
- Goals of HDFS
- HDFS Architecture
- Design of HDFS
- Hadoop Storage Mechanism
- Measures of Capacity Execution
- HDFS Commands
- The MapReduce Framework:
- Understanding MapReduce
- The Map and Reduce Phase
- WordCount in MapReduce
- Running MapReduce Job
- WordCount in MapReduce
- Running MapReduce Job
- Hadoop single node Cluster
- Hadoop single node Cluster Setup :
- Hadoop single node cluster(HADOOP-2.7.3)
- Tools installation for hadoop2x
- Sqoop,Hive,Pig,Hbase,Zookeeper
- Hadoop single node Cluster Setup :
- Hadoop single node cluster(HADOOP-2.7.3)
- Tools installation for hadoop2x
- Sqoop,Hive,Pig,Hbase,Zookeeper.
- Yarn:
- Introduction to YARN
- Need for YARN
- YARN Architecture
- YARN Installation and Configuration
- Hadoop Multinode cluster setup:
- hadoop multinode cluster
- Checking HDFS Status
- Breaking the cluster
- Copying Data Between Clusters
- Adding and Removing Cluster Node
- Name Node Metadata Backup
- Cluster Upgrading
- Hadoop ecosystem:
- Sqoop
- Hive
- Pig
- HBase
- zookeeper
- >7. MONGODB
- 8. SCALA
- 1.1 Introduction to scala
- 1.2 Programming writing Modes i.e. Interactive Mode,Script Mode
- 1.3 Types of Variable
- 1.4 Types of Datatype
- 1.5 Function Declaration
- 1.6 OOPS concepts
- 9. APACHE SPARK
- 1.1 Introduction to Spark
- 1.2 Spark Installation
- 1.3 Spark Architecture
- 1.4 Spark SQL
- Dataframes: RDDs + Tables
- Dataframes and Spark SQL
- 1.5 Spark Streaming
- Introduction to streaming
- Implement stream processing in Spark using Dstreams
- Stateful transformations using sliding windows
- 1.6 Introduction to Machine Learning
- 1.7 Introduction to Graphx
- Hadoop ecosystem:
- Sqoop
- Hive
- Pig
- HBase
- zookeeper
- 10. TABLEAU
- 11. DATAIKU
- 12. Product Based Web Application Demo based on java(EcommerceApplication)
- 13. Data deduplication Project
- 14. PYTHON
- 1.Introduction to Python
- What is Python and history of Python?
- Unique features of Python
- Python-2 and Python-3 differences
- Install Python and Environment Setup
- First Python Program
- Python Identifiers, Keywords and Indentation
- Comments and document interlude in Python
- Command line arguments
- Getting User Input
- Python Data Types
- What are variables?
- Python Core objects and Functions
- Number and Maths
- Week 1 Assignments
- 2.List, Ranges & Tuples in Python
- Introduction
- Lists in Python
- More About Lists
- Understanding Iterators
- Generators , Comprehensions and Lambda Expressions
- Introduction
- Generators and Yield
- Next and Ranges
- Understanding and using Ranges
- More About Ranges
- Ordered Sets with tuples
- 3.Python Dictionaries and Sets
- Introduction to the section
- Python Dictionaries
- More on Dictionaries
- Sets
- Python Sets Examples
- 4. Python built in function
- Python user defined functions
- Python packages functions
- Defining and calling Function
- The anonymous Functions
- Loops and statement in Python
- Python Modules & Packages
- 5.Python Object Oriented
- Overview of OOP
- Creating Classes and Objects
- Accessing attributes
- Built-In Class Attributes
- Destroying Objects
- 6. Python Object Oriented
- Overview of OOP
- Creating Classes and Objects
- Accessing attributes
- Built-In Class Attributes
- Destroying Objects
- 7. Python Exceptions Handling
- What is Exception?
- Handling an exception
- try….except…else
- try-finally clause
- Argument of an Exception
- Python Standard Exceptions
- Raising an exceptions
- User-Defined Exceptions
- 8. Python Regular Expressions
- What are regular expressions?
- The match Function
- The search Function
- Matching vs searching
- Search and Replace
- Extended Regular Expressions
- Wildcard
- 9. Python Multithreaded Programming
- What is multithreading?
- Starting a New Thread
- The Threading Module
- Synchronizing Threads
- Multithreaded Priority Queue
- Python Spreadsheet Interfaces
- Python XML interfaces
- 10. Using Databases in Python
- Python MySQL Database Access
- Install the MySQLdb and other Packages
- Create Database Connection
- CREATE, INSERT, READ, UPDATE and DELETE Operation
- DML and DDL Oepration with Databases
- Performing Transactions
- Handling Database Errors
- Web Scraping in Python
- 11.Python For Data Analysis –
- Numpy:
- Introduction to numpy
- Creating arrays
- Using arrays and Scalars
- Indexing Arrays
- Array Transposition
- Universal Array Function
- Array Processing
- Arrary Input and Output
- 12. Pandas:
- What is pandas?
- Where it is used?
- Series in pandas
- Index objects
- Reindex
- Drop Entry
- Selecting Entries
- Data Alignment
- Rank and Sort
- Summary Statics
- Missing Data
- Index Heirarchy
- 13. Matplotlib: Python For Data Visualization
- 14. Welcome to the Data Visualiztion Section
- 15. Introduction to Matplotlib
- 16. Django Web Framework in Python
- 17. Introduction to Django and Full Stack Web Development
- 15. R Programming
- 1.1 Introduction to R
- 1.2 Installation of R
- 1.3 Types of Datatype
- 1.4 Types of Variables
- 1.5 Types of Operators
- 1.6 Types of Loops
- 1.7 Function Declaration
- 1.8 R Data Interface
- 1.9 R Charts and Graphs
- 1.10 R statistics
- 16) Advance Tool for Analysis
- 1.1 git
- 1.2 nmpy
- 1.3 scipy
- 1.4 github
- 1.5 matplotlib
- 1.6 Pandas
- 1.7 PyQT
- 1.8Theano
- 1.9 Tkinter
- 1.10 Scikit-learn
- 1.11 NPL
- 17. Algorithm
- 1.naive bayes
- 2.Linear Regression
- 3.K-nn
- 4.C-nn
Trainer Profile of Data Science
Our Trainers explains concepts in very basic and easy to understand language, so the students can learn in a very effective way. We provide students, complete freedom to explore the subject. We teach you concepts based on real-time examples. Our trainers help the candidates in completing their projects and even prepare them for interview questions and answers. Candidates can learn in our one to one coaching sessions and are free to ask any questions at any time.
- Certified Professionals with more than 8+ Years of Experience
- Trained more than 2000+ students in a year
- Strong Theoretical & Practical Knowledge in their domains
- Expert level Subject Knowledge and fully up-to-date on real-world industry applications
Data Science Exams & Certification
SevenMentor Certification is Accredited by all major Global Companies around the world. We provide after completion of the theoretical and practical sessions to fresher’s as well as corporate trainees.
Our certification at SevenMentor is accredited worldwide. It increases the value of your resume and you can attain leading job posts with the help of this certification in leading MNC’s of the world. The certification is only provided after successful completion of our training and practical based projects.
Proficiency After Training
- Learn all new aspects of Data Science.
- You will have a good understanding of Data Science Algorithms.
- You will be able to work on real time projects.
- You will be able to work on file formats on different data.
Key Features
Skill Level
Beginner, Intermediate, Advance
We are providing Training to the needs from Beginners level to Experts level.
Course Duration
90 Hours
Course will be 90 hrs to 110 hrs duration with real-time projects and covers both teaching and practical sessions.
Total Learners
2000+ Learners
We have already finished 100+ Batches with 100% course completion record.
Batch Schedule
DATE | COURSE | TRAINING TYPE | BATCH | CITY | REGISTER |
---|---|---|---|---|---|
20/01/2025 |
Data Science |
Online | Regular Batch (Mon-Sat) | Canada | Book Now |
21/01/2025 |
Data Science |
Online | Regular Batch (Mon-Sat) | Canada | Book Now |
18/01/2025 |
Data Science |
Online | Weekend Batch (Sat-Sun) | Canada | Book Now |
18/01/2025 |
Data Science |
Online | Weekend Batch (Sat-Sun) | Canada | Book Now |
Students Reviews
This was fantastic. Several exhibits had been taken down, but they were still actively working on them. The majority were awake and having a good time. The planetarium was fantastic! The dude who narrated it was fantastic! Such a soothing, peaceful voice. At first, I thought it was pre-recorded.
- Dhruv Mehta
Some interesting antique and newer structures. If you want to see the key attractions, the website includes a walking tour map. If you're doing this in the summer, bring water because it's hot and the campus is big!
- Apurv Godse
Amazing! My son is studying for his Data Science here. He adores it! It's a small yet lovely campus full of interesting people.
- Ajay Khurana
Course video & Images
Corporate Training
Taking a corporate Data Science course in Canada with SevenMentor Institute can help employees improve their skill set. They can improve their performance in their existing occupations by improving their practical skills and knowledge. The productivity of a company is crucial. The productivity of a corporation can be boosted by skilled staff. Our professors are professionals in a wide range of topics. This can help with employee growth and training.
Our Placement Process
Eligibility Criteria
Placements Training
Interview Q & A
Resume Preparation
Aptitude Test
Mock Interviews
Scheduling Interviews
Job Placement
Related Courses
Have a look at all our related courses to learn from any location
Data Analysis where dealing with unstructured and structured data, Data Science is a field that encompasses anything related to data cleansing, preparation, and analysis. Put simply, Data Science is an...
R is an open-source programming language .That facilitates statistical computing for data preprocessing and graphical libraries for visualization. Being open-source,in R, there's a comprehensive environment that facilitates the performance of...
In Python, there is a comprehensive environment that facilitates the performance of statistical operations as well as the generation of data analysis in graphical or text format.
Request For Call Back
Class Room & Online Training Quotation